

The Curly House

Ecotecture

• Resilient architecture vs. Green architecture.

Breaking out of the energy efficiency box.

Disposable buildings vs. embodied energy.

The Curly House

Retro-fit or Re-build?

Typically 'ultra low' energy homes can be a little "boxey" to keep the surface area to volume ratio down low.

The energy efficiency box

Summertime sun

Each segment along the arc or crescent has good solar orientation, and would function independently as a low energy building.

Concept development

Concept sketch

Assessing construction types

Ground works

ICF Superstructure

Horns of crescent being formed

Project completed – Front entrance

View from the road side

View from the south west

View from the south east

View from the east

Internal shots

Sustainability and Life Cycle Analysis for Residential Buildings

INTERNATIONAL **Building** series NO. 4

Source: International building series No.4

mental impacts of building occupancy and demolition.

Comparison of LCA with alternatives

Timber construction

Nudura ICF construction

Air tightness barrier comparison

Concrete production is responsible for 9% of CO2 emissions globally.

The Curly House

Source: www.canadianarchitect.com (Cole & Kernan, 1996)

Recurring embodied energy

Regular replacement (between 20 and 50 years)	Regular replacement (between 50 and 100 years)	Minor maintenance (100 year
Roof coverings	Ductwork for MVHR	Foundations
Windows (When replaced, must be reinstalled to air tightness standard)	Replastering (minimal impact on air tightness)	Superstructure - walls, floors structural beams (Air tightnes inherantly within the structure
Internal joinery and oak flooring	Polished screed flooring finish.	Insulation levels
Kitchen units	Wall cappings	Solar shading devices
Electrical appliances & wiring	External rendering	
MVHR fans		
Renewable energy		

Projected refurbishment path

Do use...

When building on sites which are highly exposed, where alternate construction solutions will degrade quickly.

When designing more complex buildings.

When clients brief is for longevity.

Do not use...

When building in low lands near current sea level.

When building in densely populated areas, where adaptations to existing structures happen more regularly.

When extending existing properties, if the lifespan of the existing structure has potential to limit lifespan of the whole.

Consider carefully...

When building at perimeter of dense development. Infrastructure projects of the future may require early demolition of structures, and lead to considerable waste.

And remember to...

Design structures with obsolescence, to reduce the need for future structural alterations. Design in easy access to service runs, to allow simple affordable renovation in the future.

Our criteria for appropriate use

Thank you for listening

The Curly House

